欢迎光临,现在是     设为首页   加入收藏   联系我们
文章摘要
陈雪姣,郭连红,曾鹏.热传导方程在三种无界区域上的二择一结果[J].海南大学学报编辑部:自然科学版,2020,38(4):.
热传导方程在三种无界区域上的二择一结果
Alternative results of heat conduction equations in three unbounded regions
投稿时间:2020-06-18  修订日期:2020-07-09
DOI:
中文关键词: 热传导模型;Phragmn-Lindelf型二择一;空间衰减估计
英文关键词: Heat conduction model;Phragmn-Lindelf type alternative;Spatial decay estimates
基金项目:广东省普通高校重点项目(自然科学)(2019KZDXM042)
作者单位E-mail
陈雪姣 广东财经大学华商学院 A10314063@163.com 
郭连红 广东财经大学华商学院 guoat164@163.com 
曾鹏 广东财经大学华商学院  
摘要点击次数: 46
全文下载次数: 0
中文摘要:
      考虑了定义在三维柱形区域上的热传导模型,这种模型普遍存在于二元混合物中。通过构造辅助函数,考虑了三种不同类型的柱形无界区域。运用能量估计的方法,分别得到了热传导模型的Phragme ?n-Lindelo ?f型二择一结果。 准确地说,证明了“能量”随空间变量要么呈指数式(多项式或对数式)增长要么呈指数式(多项式或对数式。)衰减。 在衰减的情况下,建立了全能量的显式上界。
英文摘要:
      The heat conduction model defined in the three-dimensional cylindrical region is considered, which is widely used in binary mixtures. By constructing auxiliary functions, three different types of cylindrical unbounded regions are considered. By using the method of energy estimation, the alternative results of Phragme ?n-Lindelo ?f type are obtained. To be precise, it is proved that "energy" grows exponentially (polynomial or logarithmic) or decays exponentially (polynomial or logarithmic) with spatial variable. In the case of decay, the explicit upper bound of total energy is established.
关闭